Synthesis of Reactive Oxygen Species on Rutile TiO₂(110) Surface by atomic force microscopy: Superoxide and Ozone Molecules

I. Štich, 1,# Y. Adachi, Y. Sugawara, M. Konôpka, J. Brndiar, and Yan Jun Li

Electron-hole activation, transforming closed- to open-shell reactive oxygen species on photocatalytic TiO_2 surfaces, is essential for design of effective photocatalysts [1]. However, at atomic level, the activation mechanism of the oxygen species remains murky. To shed light, we used a combination of low-temperature AFM, KPFS under UHV conditions with density functional theory simulations to understand the atomic-scale mechanism of electron and hole injection into the chemisorbed oxygen species supported on the rutile TiO_2 (110) surface [2]. We demonstrate manipulation of closed-shell peroxo (O_2^{2-}) molecule by applied local electric field to induce its hopping between different adsorption sites or molecular rotation. We synthesized the open-shell superoxo (O_2^{-}) molecule by injecting a hole into the corresponding closed-shell form, Fig. 1. Combining applied local electric field with hole injection we have been able to activate a *tip-induced Langmuir-Hinshelwood reaction* leading to ozone (O_3) molecule formation and, for the first time, visualize its synthesis at atomic resolution, Fig. 1. We show that both species synthesized via hole injection are long-lived, directly demonstrating their prominent role in photocatalysis.

Figure 1. Reactive oxygen species synthesized on TiO_2 (110) surface by hole injection. Left panel: superoxide, O_2^- , Right panel: ozone, O_3^{2-} .

References

- [1] H.H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. 112, 5919 (2012).
- [2] Y. Adachi, Y. Sugawara, M. Konôpka, J. Brndiar, I. Štich, and Y. J. Li, submitted (2025).

¹ Institute of Informatics, Slovak Academy of Sciences, 845 07 Bratislava, Slovakia.

² Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

³ Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, 841 04 Bratislava, Slovakia.

[#] Presenting author's e-mail: ivan.stich@savba.sk